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The	many	hierarchies	of	statistics	
 
Hierarchical Data:  
refers to the structure of data with nested sampling levels: e.g. students 
sampled in schools and schools sampled from a population of schools or 
patients whose symptoms are measured on a number of visits. 
  
Hierarchical Models:  
is often used to refer to a set of models used where some models are 'nested' 
within each other, i.e. a simpler model is obtained by restricting the 
parameters of a more complex model. This is the usual basis for ANOVA. 
 
Hierarchical Model:  
(the sense in which we use it) a model with hierarchical components 
intended to analyze hierarchical data. Of course, nothing prevents us from 
considering hierarchies of hierarchical models in which case we are using 
both concepts in the same sentence – although they refer to entirely 
different hierarchies. 
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Statistical	goals	for	estimation:	
 
We need to keep our goals in mind as we consider various approaches to 
analyze data. When you want to estimate something, e.g. a treatment effect 
or a comparison between two groups, you want your procedure to be: 
 
 
1) consistent: You want to know that you are estimating the right thing with 
little bias.   i.e. you are aiming at the right target and, although your aim 
might be shaky, you won't be consistently off in any direction. 
 
 
2) efficient: you want to shake as little as possible. You want to use the 
'best' method available with this data and model to minimize the true 
standard error of estimation (what it really is, not what your procedure 
reports it to be) 
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3) honest: you would like to have an honest estimate of the true standard 
error. Otherwise, your CIs will have the wrong size and your p-values will 
be off. You may have more power than you think leading you to commit 
Type II errors unnecessarily or you may have less power than you think 
leading you to commit Type I errors too often. 
 
4) robust: the more a good method remains good when assumptions are 
violated, the more robust it is. Robustness is more important if you are not 
confident of assumptions or if you know that the formal assumptions are not 
satisfied. 
 
We don't necessarily need hierarchical models to analyze hierarchical data 
so we consider simpler approaches first and we will see how they measure 
up to our four criteria. 
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Hierarchical	data	
 
High school example: 
 
For multilevel modeling we will use a subset of a data set presented at 
length in Bryk and Raudenbush (1992). The major variables are math 
achievement (mathach) and socio-economic status (ses) measured for each 
student in a sample of high school students in each of 40 selected schools in 
the U.S.  Each school belongs to one of two sectors: 21 are Public schools 
and 19 are Catholic schools. There are 1,977 students in the sample. The 
sample size from each school ranges from 29 students to 66 students.  The 
data are available as the data frame 'hs' in the package 'spida'. The full data 
set is 'hsfull' and two split halves are 'hs1' and 'hs2'. The following is a 
listing of the first 50 lines of the 'hs' file: 
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> head(hs,50) 
   school mathach    ses    Sex Minority Size   Sector PRACAD DISCLIM 
1    1317  12.862  0.882 Female       No  455 Catholic   0.95  -1.694 
2    1317   8.961  0.932 Female      Yes  455 Catholic   0.95  -1.694 
3    1317   4.756 -0.158 Female      Yes  455 Catholic   0.95  -1.694 
4    1317  21.405  0.362 Female      Yes  455 Catholic   0.95  -1.694 
5    1317  20.748  1.372 Female       No  455 Catholic   0.95  -1.694 
6    1317  18.362  0.132 Female      Yes  455 Catholic   0.95  -1.694 
7    1317  14.752  0.132 Female       No  455 Catholic   0.95  -1.694 
8    1317  11.290 -0.008 Female      Yes  455 Catholic   0.95  -1.694 
9    1317  10.493 -0.108 Female      Yes  455 Catholic   0.95  -1.694 
10   1317  10.956  0.612 Female      Yes  455 Catholic   0.95  -1.694 
11   1317  21.405  0.482 Female      Yes  455 Catholic   0.95  -1.694 
12   1317  23.355  0.502 Female       No  455 Catholic   0.95  -1.694 
13   1317  12.283  0.482 Female      Yes  455 Catholic   0.95  -1.694 
14   1317   9.257  0.472 Female      Yes  455 Catholic   0.95  -1.694 
15   1317  11.502 -0.578 Female       No  455 Catholic   0.95  -1.694 
16   1317  20.039  1.152 Female      Yes  455 Catholic   0.95  -1.694 
17   1317  21.405 -0.288 Female      Yes  455 Catholic   0.95  -1.694 
18   1317  23.736  0.942 Female      Yes  455 Catholic   0.95  -1.694 
19   1317  11.027  0.722 Female      Yes  455 Catholic   0.95  -1.694 
20   1317  17.203 -0.108 Female      Yes  455 Catholic   0.95  -1.694 
21   1317  10.661  1.462 Female      Yes  455 Catholic   0.95  -1.694 
22   1317   7.031 -0.028 Female      Yes  455 Catholic   0.95  -1.694 
23   1317  13.677  0.702 Female       No  455 Catholic   0.95  -1.694 
24   1317  13.373  0.082 Female      Yes  455 Catholic   0.95  -1.694 
25   1317  10.121 -0.108 Female      Yes  455 Catholic   0.95  -1.694 
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26   1317  10.394  0.322 Female      Yes  455 Catholic   0.95  -1.694 
27   1317   6.973  0.302 Female      Yes  455 Catholic   0.95  -1.694 
28   1317  11.064 -0.098 Female       No  455 Catholic   0.95  -1.694 
29   1317  11.531 -0.848 Female      Yes  455 Catholic   0.95  -1.694 
30   1317   8.253 -1.248 Female      Yes  455 Catholic   0.95  -1.694 
31   1317   7.142  0.122 Female      Yes  455 Catholic   0.95  -1.694 
32   1317   3.220  0.272 Female      Yes  455 Catholic   0.95  -1.694 
33   1317  15.784  0.582 Female       No  455 Catholic   0.95  -1.694 
34   1317  17.246  0.642 Female      Yes  455 Catholic   0.95  -1.694 
35   1317   9.337  0.952 Female      Yes  455 Catholic   0.95  -1.694 
36   1317  15.555 -0.258 Female      Yes  455 Catholic   0.95  -1.694 
37   1317   8.382  0.492 Female      Yes  455 Catholic   0.95  -1.694 
38   1317  11.621  0.992 Female       No  455 Catholic   0.95  -1.694 
39   1317   4.810  0.832 Female      Yes  455 Catholic   0.95  -1.694 
40   1317  17.869 -0.068 Female      Yes  455 Catholic   0.95  -1.694 
41   1317   8.057 -0.088 Female      Yes  455 Catholic   0.95  -1.694 
42   1317  11.794  0.972 Female      Yes  455 Catholic   0.95  -1.694 
43   1317  18.939  0.542 Female       No  455 Catholic   0.95  -1.694 
44   1317  20.261  0.132 Female      Yes  455 Catholic   0.95  -1.694 
45   1317  10.066 -0.008 Female      Yes  455 Catholic   0.95  -1.694 
46   1317  20.236  0.812 Female       No  455 Catholic   0.95  -1.694 
47   1317   4.508  1.122 Female       No  455 Catholic   0.95  -1.694 
48   1317  18.827  0.062 Female       No  455 Catholic   0.95  -1.694 
49   1906  14.449  0.132 Female      Yes  400 Catholic   0.87  -0.939 
50   1906  20.455  0.382 Female       No  400 Catholic   0.87  -0.939 
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The first 48 lines are students belonging to school 
labelled 1317. The last 2 lines are the first cases of 
the second school in the sample labelled 1906.  
 
 
 
The uniform quantile plot of each variable gives a 
good snapshot of the data.  Think of lining up each 
variables from shortest to tallest and plotting the 
result: 
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Figure 1: Uniform quantile plots of high school data 
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Figure 2: Trellis plot with least-squares line in each school. Note that the LS line could vary because of 
randomness in the observations within a school –  i.e. they would vary even if all schools had exactly the 
same relationship between mathach and ses – and because the underlying relationship might vary from 
school to school. 
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Figure 3: Trellis plot of high school data with sex of students. 



16 
 

Comparing	mathach	and	its	relationship	with	ses	in	the	two	school	
sectors.	
 
Some possible approaches: 
 

1) Pool the data from the schools within each sector and 
analyze with OLS. i.e. completely ignore the individual 
schools and regress mathach on ses and sector alone. 
 
2a) Use a fixed effects model (Allison, 2005) to estimate 
relationship in each school and then compare the mean 
level of each sector.  Can we just fit a model on SES, 
School and Sector to estimate the effect of Sector?   
 
2b) Use a fixed effects model with varying intercept from 
school to school but assume same slope within each Sector. 
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3) Use a two step approach: fit a regression to each school 
and then estimate the mean intercept and slope of the 
schools in each sector with a multivariate analysis of the 
using the fitted intercepts and slopes as data. 
 
4) Fit a 'between school' model: take the average ses and 
average mathach from each school and then perform a 
regression on the resulting means. 
 
5) Use a hierarchical model 
 
6) Use a hierarchical model with a contextual variable to 
see that we were really estimating two things to begin with.  
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Looking	at	hierarchical	data	
 
 
> library( spida )   # also loads nlme, lattice, car, MASS 
       
> data( hs ) 
 
> head( hs ) 
    X school mathach    ses sector female    Sex Minority Size   Sector 
1 141   1317  12.862  0.882      1      1 Female       No  455 Catholic 
2 142   1317   8.961  0.932      1      1 Female      Yes  455 Catholic 
3 143   1317   4.756 -0.158      1      1 Female      Yes  455 Catholic 
4 144   1317  21.405  0.362      1      1 Female      Yes  455 Catholic 
5 145   1317  20.748  1.372      1      1 Female       No  455 Catholic 
6 146   1317  18.362  0.132      1      1 Female      Yes  455 Catholic 
  PRACAD DISCLIM HIMINTY 
1   0.95  -1.694       1 
2   0.95  -1.694       1 
3   0.95  -1.694       1 
4   0.95  -1.694       1 
5   0.95  -1.694       1 
6   0.95  -1.694       1 
 

Level 1 variables: vary from student to student   
within schools 

Level 2 variables: characteristics of schools 
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>     sapply( hs, class) 
        X    school   mathach       ses    sector    female       Sex  
"integer" "integer" "numeric" "numeric" "integer" "integer"  "factor"  
 Minority      Size    Sector    PRACAD   DISCLIM   HIMINTY  
 "factor" "integer"  "factor" "numeric" "numeric" "integer"  
 
> tab( hs, ~ Sector + school ) 
          school 
Sector     1317 1906 2208 2458 2626 2629 2639 2658 2771 3013 3610 3992 4292 
  Catholic   48   53   60   57    0   57    0   45    0    0   64   53   65 
  Public      0    0    0    0   38    0   42    0   55   53    0    0    0 
  Total      48   53   60   57   38   57   42   45   55   53   64   53   65 
          school 
Sector     4511 4530 4868 5619 5640 5650 5720 5761 5762 6074 6484 6897 7172 
  Catholic   58   63   34   66    0   45   53   52    0   56    0    0   44 
  Public      0    0    0    0   57    0    0    0   37    0   35   49    0 
  Total      58   63   34   66   57   45   53   52   37   56   35   49   44 
          school 
Sector     7232 7342 7345 7688 7697 7890 7919 8531 8627 8707 8854 8874 9550 
  Catholic    0   58    0   54    0    0    0    0    0    0    0    0    0 
  Public     52    0   56    0   32   51   37   41   53   48   32   36   29 
  Total      52   58   56   54   32   51   37   41   53   48   32   36   29 
          school 
Sector     9586 Total 
  Catholic   59  1144 
  Public      0   833 
  Total      59  1977 
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>     table( hs$school)  # number of observations per school 
 
1317 1906 2208 2458 2626 2629 2639 2658 2771 3013 3610 3992 4292 4511  
  48   53   60   57   38   57   42   45   55   53   64   53   65   58  
4530 4868 5619 5640 5650 5720 5761 5762 6074 6484 6897 7172 7232 7342  
  63   34   66   57   45   53   52   37   56   35   49   44   52   58  
7345 7688 7697 7890 7919 8531 8627 8707 8854 8874 9550 9586  
  56   54   32   51   37   41   53   48   32   36   29   59  
 
>     tab( ~ Sector + school, hs) # each school is in one Sector 
          school 
Sector     1317 1906 2208 2458 2626 2629 2639 2658 2771 3013 3610 3992 
  Catholic   48   53   60   57    0   57    0   45    0    0   64   53 
  Public      0    0    0    0   38    0   42    0   55   53    0    0 
  Total      48   53   60   57   38   57   42   45   55   53   64   53 
          school 
Sector     4292 4511 4530 4868 5619 5640 5650 5720 5761 5762 6074 6484 
  Catholic   65   58   63   34   66    0   45   53   52    0   56    0 
  Public      0    0    0    0    0   57    0    0    0   37    0   35 
  Total      65   58   63   34   66   57   45   53   52   37   56   35 
          school 
Sector     6897 7172 7232 7342 7345 7688 7697 7890 7919 8531 8627 8707 
  Catholic    0   44    0   58    0   54    0    0    0    0    0    0 
  Public     49    0   52    0   56    0   32   51   37   41   53   48 
  Total      49   44   52   58   56   54   32   51   37   41   53   48 
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          school 
Sector     8854 8874 9550 9586 Total 
  Catholic    0    0    0   59  1144 
  Public     32   36   29    0   833 
  Total      32   36   29   59  1977 
 
 
>     tab( ~ Sex + school, hs) 
 
        school 
Sex      1317 1906 2208 2458 2626 2629 2639 2658 2771 3013 3610 3992 
  Female   48   27   35   57   18    0   24   27   28   19   29   21 
  Male      0   26   25    0   20   57   18   18   27   34   35   32 
  Total    48   53   60   57   38   57   42   45   55   53   64   53 
        school 
Sex      4292 4511 4530 4868 5619 5640 5650 5720 5761 5762 6074 6484 
  Female    0   58   63   11   30   24   32   24   52   21   56   20 
  Male     65    0    0   23   36   33   13   29    0   16    0   15 
  Total    65   58   63   34   66   57   45   53   52   37   56   35 
        school 
Sex      6897 7172 7232 7342 7345 7688 7697 7890 7919 8531 8627 8707 
  Female   29   22   30    0   29    0   11   24   16   23   24   26 
  Male     20   22   22   58   27   54   21   27   21   18   29   22 
  Total    49   44   52   58   56   54   32   51   37   41   53   48 
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        school 
Sex      8854 8874 9550 9586 Total 
  Female   17   21   19   59  1074 
  Male     15   15   10    0   903 
  Total    32   36   29   59  1977 
 
 
>     by ( hs, hs$Sector, function( dd ) tab( ~ Sex + school, dd)) 
 
hs$Sector: Catholic 
        school 
Sex      1317 1906 2208 2458 2629 2658 3610 3992 4292 4511 4530 4868 
  Female   48   27   35   57    0   27   29   21    0   58   63   11 
  Male      0   26   25    0   57   18   35   32   65    0    0   23 
  Total    48   53   60   57   57   45   64   53   65   58   63   34 
        school 
Sex      5619 5650 5720 5761 6074 7172 7342 7688 9586 Total 
  Female   30   32   24   52   56   22    0    0   59   651 
  Male     36   13   29    0    0   22   58   54    0   493 
  Total    66   45   53   52   56   44   58   54   59  1144 
------------------------------------------------------  
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hs$Sector: Public 
        school 
Sex      2626 2639 2771 3013 5640 5762 6484 6897 7232 7345 7697 7890 
  Female   18   24   28   19   24   21   20   29   30   29   11   24 
  Male     20   18   27   34   33   16   15   20   22   27   21   27 
  Total    38   42   55   53   57   37   35   49   52   56   32   51 
        school 
Sex      7919 8531 8627 8707 8854 8874 9550 Total 
  Female   16   23   24   26   17   21   19   423 
  Male     21   18   29   22   15   15   10   410 
  Total    37   41   53   48   32   36   29   833 
 

Note: All Public schools are co-educational. 
 
Try 3-way table: > tab( hs, ~ Sex + school + Sector) 
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Summary variables and informative labels 
 
Is a school male, female or co-ed? 
 
>     some( hs ) 
        X school mathach    ses sector female    Sex Minority Size 
419  1517   2771  11.226  0.302      0      0   Male       No  415 
483  1760   3013  15.741  0.192      0      0   Male       No  760 
627  2969   4292   9.255  0.972      1      0   Male      Yes 1328 
960  3785   5640  14.699 -0.268      0      0   Male       No 1152 
1272 4953   6897  15.885 -0.388      0      0   Male      Yes 1415 
1632 5696   7890   3.295 -0.118      0      1 Female       No  311 
1709 6132   8531  24.418  0.592      0      0   Male       No 2190 
1717 6140   8531  -1.509  0.092      0      1 Female      Yes 2190 
       Sector PRACAD DISCLIM HIMINTY 
419    Public   0.24   1.048       0 
483    Public   0.56  -0.213       0 
627  Catholic   0.76  -0.674       1 
960    Public   0.41   0.256       0 
1272   Public   0.55  -0.361       0 
1632   Public   0.21   0.845       0 
1709   Public   0.58   0.132       0 
1717   Public   0.58   0.132       0 
 

Note: 'female' and 'Sex' are individual variable 
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Generating sex composition as a variable:  
  group mean variable = derived variable  a Level 2 variable  
>     hs$Sex.comp <- capply ( hs$Sex == "Female", hs$school, mean ) 
>     some(hs) 
        X school mathach    ses sector female    Sex Minority Size 
662  3004   4292   6.703 -0.138      1      0   Male      Yes 1328 
929  3754   5640   9.223 -0.548      0      0   Male       No 1152 
1123 4009   5762  -2.252 -1.028      0      0   Male      Yes 1826 
1298 5093   7172   5.549  0.462      1      1 Female      Yes  280 
1304 5099   7172   9.915 -0.628      1      0   Male      Yes  280 
1383 5178   7232  16.278 -0.338      0      1 Female      Yes 1154 
1536 5578   7688   9.587  0.612      1      0   Male      Yes 1410 
1641 5705   7890  -2.362 -0.048      0      0   Male      Yes  311 
1739 6162   8627  11.322  0.272      0      0   Male       No 2452 
1922 7130   9586   7.974  0.212      1      1 Female       No  262 
 
       Sector PRACAD DISCLIM HIMINTY  Sex.comp 
662  Catholic   0.76  -0.674       1 0.0000000 (Catholic boys school) 
929    Public   0.41   0.256       0 0.4210526 
1123   Public   0.24   0.364       1 0.5675676 
1298 Catholic   0.05   1.013       1 0.5000000 (Catholic coed school) 
1304 Catholic   0.05   1.013       1 0.5000000 (Catholic coed school) 
1383   Public   0.20   0.975       0 0.5769231 
1536 Catholic   0.65  -0.575       0 0.0000000 
1641   Public   0.21   0.845       0 0.4705882 
1739   Public   0.25   0.742       0 0.4528302 
1922 Catholic   1.00  -2.416       0 1.0000000 (Catholic girls school) 
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> hs.sch <- up( hs , ~ school) 
> dim( hs.sch ) 
[1] 40  6 
> some( hs.sch ) 
     school Size   Sector PRACAD DISCLIM    id 
2771   2771  415   Public   0.24   1.048 P2771 
4292   4292 1328 Catholic   0.76  -0.674 C4292 
4530   4530  435 Catholic   0.60  -0.245 C4530 
5720   5720  381 Catholic   0.65  -0.352 C5720 
6074   6074 2051 Catholic   0.32  -1.018 C6074 
6897   6897 1415   Public   0.55  -0.361 P6897 
7172   7172  280 Catholic   0.05   1.013 C7172 
8531   8531 2190   Public   0.58   0.132 P8531 
8707   8707 1133   Public   0.48   1.542 P8707 
8854   8854  745   Public   0.18  -0.228 P8854 
 
> hs.sch.all <- up( hs , ~ school, all = T) 
> dim( hs.sch.all ) 
[1] 40 10 
> some( hs.sch.all ) 
     school   mathach         ses    Sex Minority Size   Sector PRACAD DISCLIM    id 
1317   1317 13.177687  0.34533333 Female      Yes  455 Catholic   0.95  -1.694 C1317 
2629   2629 14.907772 -0.13764912   Male       No 1314 Catholic   0.81  -0.613 C2629 
2658   2658 13.396156  0.43844444 Female       No  780 Catholic   0.79  -0.961 C2658 
3992   3992 14.645208  0.36539623   Male       No 1114 Catholic   0.73  -1.534 C3992 
5640   5640 13.160105 -0.17659649   Male       No 1152   Public   0.41   0.256 P5640 
5650   5650 14.273533  0.02244444 Female      Yes  720 Catholic   0.60  -0.070 C5650 
 

Means of numeric variables, modes of factors 

Only Level 2 variables – 
constant within schools 

Level 2 and Level 2 
summaries of Level 1 
variables 
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Types	of	variables	in	multilevel	models	
 

1.Variables that vary from student to student within schools – Level 1 
 

2.Variables that vary between schools and do not vary within schools – 
Level 2 

a. Variables that are characteristics of the school 
b.Variables that are derived from within school variables, e.g. group 

mean ses in the sample in the school. 
 

3.(really a version of 1) Variables that are derived by combining 1 and 2: 
e.g. deviations from the within group mean ses, i.e. within school 
variable centered within groups. (CWG) 
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Synomyms: 
 

1. Variables that vary within clusters (=groups): 
Level 11 variables (if we count from the bottom as in SPSS or 
HLM), micro variables, within cluster variable, time-varying 
variables (if X is time, student-level variables 

 
2. Variables that are constant within schools: 

Level 2 variables (in SPSS, HLM), macro variables, between cluster 
variables, contextual variables, time-invariant variables (if X is 
time), school-level variables. 

 

                         
1 I believe that Pinheiro and Bates are alone counting in the opposite direction: Level 0 is the whole 
population, Level 1 the schools, Level 2 the students. This only matters when predicting from a 
multilevel model. 
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Note: The difference between a characteristic of the school and a 'derived' 
variable is that a derived variable could have a different value with a 
different sample of students. A characteristic of the school would not. 
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>     hs$Sex.cat <- factor( ifelse( hs$Sex.comp == 1, "Girls",  
                  ifelse( hs$Sex.comp == 0 , "Boys", "Coed")) ) 
>     some(hs) 
        X school mathach    ses sector female    Sex Minority Size 
13    153   1317  12.283  0.482      1      1 Female      Yes  455 
27    167   1317   6.973  0.302      1      1 Female      Yes  455 
526  2284   3610  21.034  1.012      1      0   Male       No 1431 
1394 5341   7342  23.271 -0.748      1      0   Male       No 1220 
1417 5364   7342  12.821 -0.248      1      0   Male       No 1220 
1441 5388   7342  11.664  0.862      1      0   Male       No 1220 
1658 5722   7919  13.184 -0.038      0      0   Male       No 1451 
1876 6504   8874  20.879  0.732      0      0   Male      Yes 2650 
1884 6512   8874  24.479  0.652      0      0   Male       No 2650 
1898 7106   9550  20.149  0.472      0      1 Female       No 1532 
 
       Sector PRACAD DISCLIM HIMINTY  Sex.comp Sex.cat 
13   Catholic   0.95  -1.694       1 1.0000000   Girls 
27   Catholic   0.95  -1.694       1 1.0000000   Girls 
526  Catholic   0.80  -0.621       0 0.4531250    Coed 
1394 Catholic   0.46   0.380       1 0.0000000    Boys 
1417 Catholic   0.46   0.380       1 0.0000000    Boys 
1441 Catholic   0.46   0.380       1 0.0000000    Boys 
1658   Public   0.50  -0.402       0 0.4324324    Coed 
1876   Public   0.20   1.742       0 0.5833333    Coed 
1884   Public   0.20   1.742       0 0.5833333    Coed 
1898   Public   0.45   0.791       0 0.6551724    Coed 
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Creating	a	more	informative	school	id	
>  hs$sid <- factor( paste( substr( hs$Sector, 1,1),  
           hs$school, substr( hs$Sex.cat, 1,1), sep = '')) 
# Keep each sector together, within sector order by mean ses: 
>  hs$sid <- reorder( hs$sid, hs$ses + 1000 * (hs$Sector == "Catholic")) 
>  some(hs) 
 
        X school mathach    ses sector female    Sex Minority Size 
137   789   2208  14.150  0.482      1      1 Female       No 1061 
165   992   2458   7.814 -1.058      1      1 Female      Yes  545 
231  1167   2626  10.350 -0.448      0      1 Female       No 2142 
265  1201   2629  20.891 -0.278      1      0   Male       No 1314 
358  1384   2658   9.459  0.702      1      1 Female       No  780 
407  1505   2771  17.129 -0.328      0      1 Female       No  415 
450  1548   2771  21.020 -1.098      0      1 Female       No  415 
687  3029   4292  19.030 -0.498      1      0   Male      Yes 1328 
953  3778   5640  16.212 -0.308      0      0   Male       No 1152 
1617 5681   7890   0.930 -1.038      0      0   Male       No  311 
       Sector PRACAD DISCLIM HIMINTY  Sex.comp Sex.cat    sid 
137  Catholic   0.68  -0.864       0 0.5833333    Coed C2208C 
165  Catholic   0.89  -1.484       1 1.0000000   Girls C2458G 
231    Public   0.40   0.142       0 0.4736842    Coed P2626C 
265  Catholic   0.81  -0.613       0 0.0000000    Boys C2629B 
358  Catholic   0.79  -0.961       0 0.6000000    Coed C2658C 
407    Public   0.24   1.048       0 0.5090909    Coed P2771C 
450    Public   0.24   1.048       0 0.5090909    Coed P2771C 
687  Catholic   0.76  -0.674       1 0.0000000    Boys C4292B 
953    Public   0.41   0.256       0 0.4210526    Coed P5640C 
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Easy	manipulation	of	multilevel	data	
 
Creating a multilevel data set: 
 
1. Create a data set for each level, e.g. school and students. Or board, school 
and student with 3 levels.  
 
2. Include an index variable for each level – a variable that has a unique 
value for each row of its data set. In each data set include the values of the 
index for the data set immediately above it. 
  
3. Make sure all variable names are unique across all data sets except for 
the index variables that need to have the same name in a data set and the 
data immediately below. 
 
How? You can use Excel and save as '.csv' file. Then read into R.  
 
> schoolfile <- read.csv("schoolfile.csv") 
> studentfile <- read.csv("studentfile.csv") 
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Merge files into a single combined file (often called a 'long' file) for 
analysis: 
 
> combfile <- merge( schoolfile, studentfile ) 
 
 

Note: hs is already a long file in which Level 2 variables were entered 
directly in a Level 1 file. You can also do this but there are slightly higher 
chances of errors if Level 2 variables are entered inconsistently. 
 
We saw above how to create a Level 2 derived variable from Level 1 data 
with  capply 
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Going from the long file to the short file with 'school invariant' variables 
only: 
 
>     hs.sid <- up ( hs, ~ sid ) 
>     some( hs.sid ) 
 
       school sector Size   Sector PRACAD DISCLIM HIMINTY  Sex.comp 
C2208C   2208      1 1061 Catholic   0.68  -0.864       0 0.5833333 
C2658C   2658      1  780 Catholic   0.79  -0.961       0 0.6000000 
C3610C   3610      1 1431 Catholic   0.80  -0.621       0 0.4531250 
C4530G   4530      1  435 Catholic   0.60  -0.245       1 1.0000000 
       Sex.cat    sid 
C2208C    Coed C2208C 
C2658C    Coed C2658C 
C3610C    Coed C3610C 
C4530G   Girls C4530G 
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Looking	at	Hierarchical	Data	
Look	at	relationships	(mathach	~	ses)	in	hierarchical	data	
 
3 main tools 
 
1) Traditional graphics 
 
2) Lattice (=trellis) graphics 
 
3) 3D graphics 
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Traditional graphics: 
 
 
 
>  fit <- lm( mathach ~ ses, hs) 
>  plot( mathach ~ ses, hs) 
>  abline( fit ) 
 

Advantage:  
 
* Easy to add new objects 
* Intuitive 
* Somewhat interactive 
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Lattice graphics  
 

Easy to create panels and 
groups within panels 
 
 
> library( lattice ) 
 
> xyplot( mathach ~ ses  
   | Sector, hs,  
   groups = Sex,  
   auto.key = T) 
 
 

But it's more difficult to add 
extra elements to the graph. 
This must be done in 'panel' 
functions that are called to 
generate each panel or with 
the 'trellis.focus' interface. 
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> xyplot(  
   mathach ~ ses | Sector, 
   hs, 
   panel =  
    function(x, y, ...) { 
     panel.xyplot( x, y, 
              ...) 
     panel.lmline( x, y, 
               ...) } )      

The 'panel' function is 
defined on the fly.  It uses 
arguments that will be 
passed to it automatically 
when it is called within 
xyplot to draw the panels.  
It uses convenience 
functions 'panel.xyplot' 
and 'panel.lmline' that 
are designed to work well 
within panels. Try ??panel 
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xyplot( mathach ~ ses | Sector , hs,  groups = Sex, 
            auto.key = list( columns = 2, lines = T, points = T), 
            panel = panel.superpose.2, 
            panel.groups = function(x, y, ...) { 
                  panel.xyplot( x, y, ...) 
                  panel.lmline( x, y ,...) }) 
 
 
 
 
 

A more complex example using 
groups and panel.groups that is 
called for each group within each 
panel. 
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Exploring	the	relationship	between	mathach	and	ses	
We want to explore how mathach and its relationship with ses differ 
between sectors. 
 
As mentioned previously there are a number of plausible approaches: 
 
1)  Pooling the data: ignore schools, just pool all the data in each sector 

together and do an OLS regression. 
      lm( matach ~ ses * Sector, hs) 
 

2 a) Use a fixed effects model (version 1) to estimate relationship in 
each school and then compare the mean level of each sector.   
   lml <- lm( matach ~ factor(school)/ses -1, 
              hs) 
  ddu <- up( hs, ~ factor(school)) 
  ind <- ddu$Sector == "Catholic" 
  L <- rbind( "Catholic" = ind,  
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                                   "Public" = 1-ind) 
  L <- L/apply(L,1, sum) 
  L <- cbind( rbind( L, 0,0), rbind( 0,0,L)) 
  rownames( L ) <- c("Cath Int", "Pub Int",  
                 "Cath Slope", "Pub Slope") 
  wald (lml, L) 
  diffmat <- rbind( "Int" = c( -1, 1, 0, 0), 
                Slope = c( 0 , 0, -1, 1))      
      
  wald (lml, diffmat %*% L) 
  numDF denDF  F.value p.value 
      1     2  1897 21.03533 <.00001 
       Estimate Std.Error   DF   t-value  p-val  
Int   -2.027255  0.351992 1897 -5.759378 <.00001 
Slope  1.109995  0.454114 1897  2.444309 0.0146 

 
Difference of averages that give equal weight to each school. Uses 
only within-school variability except for pooled estimate of 2 . 
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Question: Why is this so complicated? Can't we just fit a model 
regressing on SES, School and Sector to estimate the effect of 
Sector?  

 
2 b)  Fixed effects model (version 2): OLS regression with different 

intercepts in each school but common slopes in each sector. 
 
     fit2 <- lm( mathach ~ ses + factor(school) 

+ ses:Sector, hs) 
     wald( fit2, "ses:Sector") 
                   
Coefficients Estimate Std.Error   DF  t-value p-value 
  ses:Sector 1.204719  0.436134 1935 2.762267 0.00579 
 
Here we assume all slopes are the same within each sector. The average 
Sector slope gives more weight to schools with larger samples and more 
spread in ses.  Between school variability in levels plays no role in SEs. 
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3)   MANOVA approach: Get individual school intercepts and slopes as in 
2a but then do a MANOVA to compare the two sectors. 
 
 lcoefs <- coef( lmList( mathach ~ ses | 
            factor(school), hs)) 
 lm.mult <- lm( as.matrix(lcoefs) ~ Sector,  
            up( hs, ~ factor(school))) 
 summary(lm.mult) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)    1.6672     0.3506   4.756 2.84e-05 *** 
SectorPublic   1.1100     0.5086   2.182   0.0353 *  
 

SE is measured from between school variability not within 
school variability. The fact that the precision of estimates 
varies from school to school is ignored. However inferences to 
generalize to the larger population. Note the larger p-value 
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4) Ecological or between school model: Summarize the data from each 
school with the mean ses and the mean mathach from each school. Do an 
OLS regression on the resulting data. 

 
 fit.eco <- lm( mathach ~ ses,  
               up( hs, ~ factor(school), all = T)) 
 summary( fit.eco ) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  12.7926     0.2898  44.150  < 2e-16 *** 
ses           5.7734     0.6984   8.267  5.1e-10 *** 

 
This is estimating something totally different: the difference in between 
school slopes, not within school slopes 
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5) Use a Hierarchical Linear Model 
  
 The HLM uses both between school variation and within school 

variation to estimate the standard error of estimates. Inference 
generalizes to the larger population. Some estimates in the HLM rely on 
the assumption that between school and withing school effects are the 
same.   
 

6) Use a Hierarchical Linear Model with appropriate contextual variables. 
    

Using a derived contextual variable for ses (group mean ses in each 
school) as well as raw (or centered within school) ses allows separate 
unbiased estimation of both within and between school effects. 
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Method	1:	Pooling	of	data	–	ignore	schools	
 
>     fit.pooled <- lm( mathach ~ ses * Sector, hs) 
>     summary(fit.pooled) 
Call: 
lm(formula = mathach ~ ses * Sector, data = hs) 
Residuals: 
     Min       1Q   Median       3Q      Max  
-19.1774  -4.8286   0.2949   4.9595  15.7836  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     13.5579     0.1881  72.067  < 2e-16 *** 
ses              2.2999     0.2582   8.908  < 2e-16 *** [eff. of ses|Cath] 
SectorPublic    -1.4666     0.2921  -5.021 5.60e-07 *** [Pub-Cath|ses=0] 
ses:SectorPublic 1.6051     0.3845   4.174 3.12e-05 *** [diff. of slopes] 
 
Residual standard error: 6.344 on 1973 degrees of freedom 
Multiple R-squared: 0.1404,     Adjusted R-squared: 0.1391  
F-statistic: 107.4 on 3 and 1973 DF,  p-value: < 2.2e-16  
 

Coefficients in blue are 'marginal' to the interaction and should be 
interpreted – if at all – with care. The coefficient for "ses" (2.2999) is 
NOT "the estimated effect of ses" – it is the estimated "effect" of ses 
when SectorPublic = 0, i.e. in Catholic schools  
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Method 1: Fitted lines  

 

 

The code to produce this and following graphs is contained in the on-line appendix 
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Figure 4: 95% confidence ellipse for intercept and slope in each Sector 
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Method	2:	Fit	each	school	then	average	slopes	and	intercepts	in	
each	sector	
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Figure 5: Pooled data estimates with CE plus estimated line for each school 
Estimated lines for each sector using pooled data + estimated line for each school 

-1 0 1 2 3 4 5 6

0
5

10
15

20
response in beta space

ses


0



54 
 

 
Figure 6: Adding Sector means and CEs based on averaging the estimate for each school 
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Figure 7: Adding CE based on average of schools 
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What is the problem with this? 
The estimated std. error depends  ONLY on within school variability 
 
In other words if we moved the individual school arbitrarily far apart we 
would still have the same CE for the Sector effect. 
 
Principle of marginality   Principle of invariance:  

Things that shouldn't matter, shouldn't matter! 
 
'Principle of variance':  

Things that should matter, should matter! 
 
If this method gives us exactly the same answer regardless of the between 
school variability that signals that the SE can not generalize to the 
population of schools  -- only to the putative population 
of new student samples within these PARTICULAR schools. 
 
We ignored that we shouldn't ignore? The between school variation. 
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Method	3:	Two‐stage	approach	or	'derived	variables'	approach	
 
Idea:  
First: Estimate slope and intercept within each school as we did in   

Method 2. 
 
Second: Use the estimated slopes and intercepts as a multivariate sample 

and do a MANOVA test of equality of the two sector means. 
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Dashed ellipse was 
obtained from fixed 
effects model. 
 
Solid ellipse with 
same center, from 
Manova model. 
 
Note: 
1) both have the 
same centre 
2) the latter is larger 
because it 
generalizes to new 
samples with 
MORE variability. 
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The fixed effects 
model 95% CE is 
valid for new 
samples of students 
from the same 
schools. It does not 
generalize to the 
population of 
schools. 
 
The Manova model 
does generalize to 
new schools 
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Disadvantages 
(often small): 
 
- gives equal weight 
to all schools 
regardless of 
information in 
sample (n, spread of 
ses 
 
- need to discard 
data from schools 
where there are too 
few points to fit a 
model (here if n=1) 
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The magenta 
ellipses are based 
on the Manova 
model. 
 
The large magenta 
ellipse has 
approximate 95% 
coverage. 
 
The smaller ellipse 
has 95% shadows. 
Thus the p-value 
for the difference in 
the effect of ses in 
the two sectors 
would be just below 
0.05. 
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The magenta ellipse 
generalizes to the 
sectors, the green 
ellipse only to new 
students from the 
same set of schools. 
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The magenta 
ellipses are based 
on the Manova 
model. 
 
The large magenta 
ellipse has 
approximate 95% 
coverage. 
 
The smaller ellipse 
has 95% shadows. 
Thus the p-value 
for the difference in 
the effect of ses in 
the two sectors 
would be just below 
0.05. 
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Adding the 
between school 
model 
 
 
Note that the 
pooled estimates 
are somewhere 
between the 'within 
school estimates' 
and the 'between 
school estimates' 
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Method	4:	The	between‐school	model	
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Note that the pooled 
estimate of 
differences also lies 
on an arc between the 
'within estimate' and 
the 'between school' 
estimate 
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Why	do	we	get	three	estimates?	
Because there are three effects of ses:  

1. between schools: ecological association  
2. within schools: conditional association  
3. across schools: marginal association 

 

Within school 
effect 
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Between school effect 
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Pooled effect (across schools) 
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Interesting fact: 
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Paradoxes	of	Regression:	
Robinson's Paradox refers to the fact that  
        

W  and 
B  can have different signs. 

Simpson's Paradox refers to the fact that 
        

W  and 
P  can have different signs. 
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Some	Fallacies	of	Regression:	
Ecological fallacy consists in estimating 

B  and believing you have 
estimated 

W . 
Atomistic fallacy consists in estimating 

W  and believing you have 
estimated 

B . 
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Summary	of	methods	
 

Method Consistent? Efficient? Honest? 
Pooled 
data 

Estimates a 
combination of 

W  and 
B  in 

each sector. 

For what? No. Does not take clustering 
into account. You might have 
far fewer independent pieces of 
information than you think.  

Fixed 
effects 

Estimates 
W  

in each sector. 
Yes Only generalizes to new 

students from the same fixed 
set of schools. Does not 
generalize to the population of 
schools in each sector, i.e. to 
the sectors themselves. 
Reported SE likely to be too 
small to generalize to new 
schools 
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Method Consistent? Efficient? Honest? 
2-step 
method: 
derived 
variables, 
regress 
then 
average 

Estimates 
W  

in each sector. 
No2 – unless 
size and 
spread of ses 
is similar in 
each cluster. 
Does not 
give more 
weight to 
schools with 
more 
information 
(n or spread 
of ses) 

Yes. Generalizes to the 
population of schools. 

                         
2 Although the estimate may be similar to the fixed-effects estimate because they both estimate the 
same thing, it is not, in general, equal because the two estimates give different weight to each 
school's estimated slope.  
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Method Consistent? Efficient? Honest? 
Ecological 
or 
Between 
School 
analysis:  
average 
then 
regress 

Estimates 
B  

in each sector. 
Note that we 
are generally 
really interested 
in 

W  

No – does 
not take 
differences 
in sample 
size and 
spread of 
data into 
account but 
it would be 
easy to do 
so. 

Yes. 
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Hierarchical	Models	
 
Method Consistent? Efficient? Honest? 
HLM Yes under common tacit but unrealistic 

supposition that 
B W  Otherwise the 

estimate is, like the pooled estimate, a 
combination of 

W  and 
B  in each 

sector. But will be closer – generally 
much closer – to 

W  than the pooled 
estimate. It is consitent for 

W  as the 
cluster size increases – not as the 
number of clusters increases 

Yes Yes 

HLM + 
contextual 
variable 

Gives separate consistent separate 
estimates of 

W  and 
B . 

Yes Yes 
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Review	of	the	matrix	formulation	of	regression	
 
You don't need to understand this in depth to use HLMs but it's useful to 
know where many of the results come from.  If you already know 
regression formulated with matrices, then it's easier to see how to make the 
jump from OLS regression to HLM regression. 
 
Y X    is such a universal and convenient shorthand that we need to 
spell out what it means and how it is used.  

 
Here's the equation for a single observation assuming 2 X variables: 
 

0 1 1 2 2i ii iY x x                 1, ,j N    

 
with i iid 2(0, ).N    
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We pile these equations one on top of the other: 
 

 

1 0 11 1 21 2 1

2 0 12 1 22 2 2

0 1 1 2 2

0 1 1 2 2

j ii i

N NN N

Y x x
Y x x

Y x x

Y x x

   
   

   

   

   
   

   

   





 

Note that the s  remain the same from line to line but Ys, xs and s  change. 
Using vectors and matrices and exploiting the rules for multiplying 
matrices: 

11 211 1
0

22 12 22
1

2
1 2

1
1

1 NN N N

x xY
Y x x

Y x x





 

                                          

 
 
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or, in short-hand: 
 

 Y Xβ ε  

 
In multilevel models with, say J schools indexed by 1,...,j J and with the 
jth school having jn  students, we block students of the same school together. 
We just add js to show that this is the jth school. The big difference is that 
the might change from school to school and that the sample size can 
change from one school to the next. So we use jn  to denote the sample size 
for the jth school: 
 
 

 

11 211 1
0

212 222
1

2
1 2

1
1

1
jj ji

j jj j
j

jj jj
j

j n jn j n jn j

x xY
x xY

x xY


 

 

                                              

 
  

  

s
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or, in short hand: 
 
 j j j j Y X β ε   

 
We can stack schools on top of each other. If all schools are assumed to 
have the same value for j β β, then we can stack the Xs vertically: 
 

 

1 1 1

j j j

JJ J

     
     
     
     
     
     
     
     
     
        

 

Y X ε

Y X β ε

εY X

  

  
  

or, in shorter form: 
 
  Y Xβ ε   
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If the js  are different we can stack the jX s diagonally: 
 
 

1 11 1
0 0

0 0

0 0

jj j j

JJJ J

                                                                        

 

X βY ε

XY β ε

εXY β

 
      
 

      
 

 

 
 
or, in shorter form: 
 
  Y Xβ ε   

again! 
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Something that gets used over and over again is the fact that if 
2~ (0, )N ε I , i.e. all s   are independent and normal with the same 

variance then the best estimator of β is the OLS (ordinary least-squares) 
estimator: 
 ' 1 '( )OLSβ X X X Y


  

with variance  
 

2 ' 1( ) XX  
 
If the components of are not iid but ~ (0, )Nε Σ  where Σ  is a known 
variance matrix (or, at least, known up to a proportional factor) then the 
GLS (generalized least-squares) estimator is: 
 
 ' 1 1 ' 1( )GLS   β XΣ X XΣ Y


 

 
with variance 

' 1 1( ) XΣ X . 



83 
 

The	Hierarchical	Model	
We develop the ideas for mixed and multilevel modeling in two stages: 
 

1. Multilevel models as presented in Bryk and Raudenbush (1992) in 
which the unobserved parameters at the lower level are modeled at the 
higher level. This is the representation used in HLM, the software 
developed by Bryk and Raudenbush and, to a limited extent in 
MLwiN. 

 
2. Mixed models in which the levels are combined into a combined 

equation with two parts: one for ‘fixed effects’ and the other for 
‘random effects.’ This is the form used in R, SAS and in many other 
packages. 

 
Although the former is more complex, it is more natural and and intuitive. It 
also gives us important insights into the structure of these models. 

 



84 
 

We will use the high school Math Achievement data for an extensive 
example. We think of our data as structured in two levels: students within 
schools and between schools.   

 
We also have two types of predictor variables: 
 
1.within-school Level 1variables: Individual student variables: SES, 

Sex, individual minority status.  These variables are also known by 
many other names, e.g. inner variables, micro variables, level-1 
variables3, time-varying variables in the longitudinal context. 

 
2.between-school Level 2 variables: Sector: Catholic or Public, school 

meanses, size, mean ses of sample, sample size. These variables are 
also known as outer variables, macro variables, level-2 variables, or 
time-invariant variables in a longitudinal context.  A between-school 
variable can be created from a within-school variable by taking the 

                         
3 In some hierarchical modeling traditions, e.g. R, the numbering of levels is reversed going from the top down 
instead of going from the bottom up. One needs to check which approach an author or package is using. 
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average of the within-school variable within each school.  Such a 
derived between-school variable is known as a ‘contextual’ variable.  
These variables are useful only if the average differs from school to 
school.  Balanced data in which the set of values of within-school 
variables is be the same in each school does not give rise to contextual 
variables.  

 

Basic	structure	of	the	model:	
 
1. Each school has a true regression line that is not directly observed 

 
2. The observations from each school are generated by taking random 

observations generated with the school’s true regression line 
 

3. The true regression lines for each school come from a population or 
populations of regression lines 
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Within	School	model:		
For school i: (For now we suppose all schools come from the same 

population, e.g. only one Sector) 
 

1) True but unknown 0 0

SES 1

j j
j

j j

 
 

   
   
   
   
      

 β  for each school 

 
2) The data are generated as  
 

 ~ (0, ) independent of '
ij ij ijj j

ij j

Y X
N s

  
 
 



  

β  
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	Between	School	model:	

We start by supposing that the 0 0

SES 1

j j
j

j j

 
 

   
   
   
   
      

 β  are sampled from a 

single population of schools. In vector notation: 
 
 
 ~ ( , )j j j N β γ u u 0 G  

where  

 1

1 11

g g
g g
 



 
 
  

G  

 
is a variance matrix. 
Writing out the elements of the vectors: 
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0 00 000

1 1 1011

0, ~ ,0
j jj

j
j jj

u u g
Nu u g

 


                                   

  β

 
 
Note: 

 

0 00

1 11

0 1 10 01

Var( )
Var( )

Cov( , )

i

i

i i

g
g
g g




 



 
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A	simulated	example	
To generate an example we need to do something with SES although its 
distribution is not part of the model. In the model the values of SES are 
taken as given constants. 
 
We will take: 

 
12 16 8, , 20
2 8 25

    
   
      

  γ G  

 
Once we have generated jβ  we generate ~ (30)jN Poisson  and ~ (0,1)SES N  
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Here’s our first simulated school in detail:  
 

 
For 1:j  

  

  
   
    SES : 
 
  -1.05 -0.78  1.05 -1.01  0.77  1.85  0.87 -1.18  0.18  2.08 -1.14 -1.71 
  -0.64 -0.41  0.86  1.29  0.04  0.23  0.90  0.50 -2.10 -1.89  0.38 
 
 

  jε : 

 

 
  4.46 -0.73  0.30  7.63 -7.03  1.20 -6.23 -4.66  6.17  0.75 -1.43  0.46 
  3.64 -2.39  2.24  2.60  3.96  0.71 -3.74  3.30  4.42 -4.59 -3.61 
 
   

  1ij ij ijj jY SES     : 

 

  14.53   8.09   0.70  17.56  -5.34  -2.10  -4.99   6.03  10.58  -3.59 
   9.09  13.57  11.83   4.75   3.51   1.88   9.00   4.91  -2.66   6.24 
  19.37   9.38  -0.13 
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Figure 8: Simulation: mean population regression line γ 
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Figure 9: Simulated school: True regression line in School 1: j j β γ u  
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Figure 10: School 1 regression line with data generated by 
1ij ij iji iY SES       
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Figure 11: Simulated school: True regression line iβ , data, and least-
squares line ˆ

i
β  
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Figure 12: Simulated school in beta space with true mean line 
represented by a point. 
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Figure 13: Simulated school: population mean line in beta space with dispersion ellipse with matrix 
G for random slopes and intercepts. Note that shadows of the ellipse yield the mean plus or minus 1 
standard deviation
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Figure 14: A random ‘true’ intercept and slope from the population. This one happens to be 
somewhat atypical but not wholly implausible. 
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Figure 15: ‘True’ intercept and slope with dispersion ellipse with 
matrix   1

2 'j j


X X for ˆ
j

β .  
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Figure 16: Observed value of ˆ
j

β . 
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Figure 17: The blue dispersion ellipse with matrix   1
2 'j j j



 V G X X is 
almost coincident with the dispersion ellipse with matrixT. 
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Note that with smaller N, larger 2 or smaller dispersion for SES, these 
dispersion ellipse for the true j

β  (with matrix T) and the dispersion ellipse 
for ˆ

jβ  as an estimate of γ(with matrix   1
2 'j j j



 V G X X ) could differ much 
more than they do here. Also note that the statistical design of the study can 
make   1

2 'j j


X X smaller but, typically, not G.  
 

Between‐School	Model:	What	γ	means	

Instead of supposing that we have a single population of schools we now 
add the between-school model that will allow us to suppose that there are 
two populations of schools: Catholic and Public and that the population 
mean slope and intercept may be different in the two sectors.  Let W 
represent the between-school variable sector variable that is the indicator 
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variable for Catholic schools: j
W  is equal to 1 if school j is Catholic and 0 if 

it is public.4  
 
We have two regression models, one for intercepts and one for the slopes: 
 

 
0 00 01

1 10 11 1

j ojj

jj j

W u
W u

  
  

  
  

  

  

We can work out the following interpretation of the ij  coefficients by 
setting jW  to 0 for Public schools and then to 1 for Catholic schools. The 
interpretation is analogous to that of the ordinary regression to compare two 
schools except that we are now comparing the two sectors. 
 

                         
4 Between-school variables are not limited to indicator variables. Any variables suitable as a predictor in a linear 
model could be used as long as it is a function of schools, i.e. has the same value for every subject within each 
school. 
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 In Public schools: 
 

     0 00 01 0 00 0

1 10 11 1 10 1

0
0

j j j

j j j

u u
u u

   
   

     
     

 

  
 In Catholic schools: 
 

      0 00 01 0 00 01 0

1 10 11 1 10 11 1

1
1

j j j

j j j

u u
u u

    
    

      
      

 

 
 Thus: 

1. 00  is the mean achievement intercept for Public schools, i.e. the mean 
achievement when SES is 0. 

2. 00 01   is the mean achievement intercept for Catholic schools so that 01  
is the difference in mean intercepts between Catholic and Public 
schools. 

3. 10  is the mean slope in Public schools. 
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4. 10 11   is the mean slope in Catholic schools so that 11  is the mean 
difference in (or difference in mean) slopes between Catholic and 
Public schools. 

5. 0 j
u  is the unique ‘‘effect’’ of school j on the achievement intercept, 
conditional given W. 

6. 1 ju  is the unique ‘‘effect’’ of school j on the slope, conditional given W. 
 
Now, 0 ju  and 1 ju  are Level 2 random variables (random effects) which we 

assume to have 0 mean and variance-covariance matrix: 
 

00 01

10 11

g g
g g

 
 
 
 

G  

 
This is a multivariate model with the complication that the dependent 
variables, 0 j , 1 j  are not directly observable.  
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As mentioned above, one way to proceed would be to use a two-stage 
process: 
 

1. Estimate 0 j , 1 j  with least-squares within each school, and 
2. use the estimated values in a Level-2 analysis with the model above. 

 
Some problems with this approach are: 
 

1. Each 0̂i , 1̂i  might have a different variance due to differing jn s and 
different predictor matrices iX in each school. A Level 2 analysis that 
uses OLS will not take these factors in consideration. 
 

2. Even if iX  (thus jn ) is the same for each school, we might be interested 
in getting information on T itself, not on 
 
                         2 ' 1ˆvar( ) ( )i   β G XX  
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3. 0̂i , 1̂i  might be reasonable estimates of the ‘parameters’ 0i  and 1i  but, 
as ‘estimators’ of the random variables 0i  and 1i they ignore the 
information contained in the distribution of  and . 

4. Some level 1 models might not be estimable, so information from these 
schools would be entirely lost. 

 	

0i 1i
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Mixed	or	Combined	or	Composite	model	
From	the	multilevel	model	to	the	mixed	model	
 
 
 
 
Since 

 
0 00 0

1 10 11

1 0

1

jj

j j

j

j

W u
W u


 

   

  
 

 
 
  

Between School 
Model 
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We combine the models by substituting the between school model above 
into the within school model: 
 

10j ijjji ijY X r    

 
Substituting, we get 

1

00 11

0

00 01 0

1( )

ij ij ij

ij ijj

j

j

j

j

j

W u

r

u

Y X

X r

W



 



 

 
  


 
  
 
 




 
 

 















 

 
We then rearrange the term to separate fixed parameters from random 
coefficients:  
 

Within School 
Model 
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1

00

0

00 01 0

00 0

11 1

10

0

111

1

( )

ij ij ij

ij ij

ij ij

ij ij

j

j j

j

j j

j

j

j

j

W u

W u
W

Y X r

X r
X

u X r
W
u

X



 
 



 

 

 
  
 
 
  
 

 
  
 



  



 
  



 








 

  

The last two lines looks like the sum of two linear models: 
 
  1) an ordinary linear model with coefficients that are fixed parameters: 
 

00 01 10 11j ij j ijW X W X       
 

with fixed parameters 00 01 10 11, , , ,     and 
 

Same as previous 
page 

Grouping fixed 
and  
random parts  
together 
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2)  a linear model with random coefficients and an error term: 
 

0 1 ij ijj ju u X r   

 
with random ‘parameters’

0 j
u  and 

1 j
u . 

 
Note the following: 
 

1. the fixed model contains both outer variables and inner variables as well 
as an interaction between inner and outer variables. This kind of 
interaction is called a ‘cross-level’ interaction.  It allows the effect of X 
to be different in each Sector. 

 
2. the random effects model only contains an intercept and an inner 

variable.  There are very arcane situations in which it might make sense 
to include an outer variable in the random effects portion of the model 
which we will consider briefly later. 
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Understanding the connection between the multilevel model and the 
combined model is useful because some packages require the model to be 
specified in its multilevel form (e.g. MLWin) while others require the 
model to be specified in its combined form as two models: the fixed effects 
model and the random effects model (e.g. SAS PROC MIXED, R and S-
Plus lme() and nlme()).   
 

GLS	form	of	the	model	
Another way of looking at this model is to see it as a linear model with a 
complex form of error. Let ij  represent the combined error term – also 
known as the composite error term: 
 

0 1ij ij ijj ju u X r     

 
We can then write the model as: 
 

00 01 10 11ij j ij j ij ijY W X W X          
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This looks like an ordinary linear model except that the ij s are not 
identically 2(0, )N   and are not independent since the same 0 ju and 1 ju  contribute 
to the random error for all ij s in the jth school. If we let jδ be the vector of 
errors in the jth school we can express the distribution of the combined 
errors as follows: 
    
   1

2~ (0, ' ),  and  are independent for .j i i j kN j k


 δ G X X δ δ  
 

If  Τ and 2  were known then the variance-covariance matrix of the 
random errors could be computed and the model fitted with Generalized 
Least-Squares (GLS). 

 
With Τ and 2  unknown, we can iteratively estimate them and use the 

estimated values to fit the linear parameters, st  by GLS. There are variants 
depending on the way in which Τ and 2  are estimated.  Using full 
likelihood yields what is often called ‘‘IGLS,’’ ‘‘ML,’’ or ‘‘FIML.’’ Using 
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the conditional likelihood of residuals given Ŷ  yields ‘‘RIGLS’’ or 
‘‘REML’’ (R for restricted or reduced). 

 

Matrix	form	
Take all observations in school j and assemble them into vectors and 
matrices: (this is called the Laird-Ware formulation of the model from Laird 
and Ware (1982)) 
  

j j j j j  Y X γ Z u r  
where 

1 1 1
1

2 2 2

1 1
1 1

, ,

1 1j

j j j

j jj j j
j

j jj j j
j j j

n j

j n j j n j n j

W X W X X
Y

W X W X X

Y
W X W X X

   
    
    
    
    
    
         
   

  Y X Z
     
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100

20 01

1 10

11

, , , 1, ,

j

j

jj
j j

j

n j

r
ru

j Ju
r






                                  

   u γ r 


 

The distribution of the random elements is: 2~ (0, ), ~ (0, )
j j

N N u G r Ι  with 
j

u

independent of jr . 
Now we put the school matrices together into big matrices: 
 

  Y Xγ Zu r  
where 

1 1 1

, , ,
J JJ

       
       
       
       
       
             

   
1

J

Y X u r
Y X u r

u rY X
     
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1

2

0 0
0 0

0 0 J

 
 
 
 
 
 
 
  



Z
ZZ

Z




   


 

with 

~ ,N

    
    
    
    
    
    
        

0 G 0 0
0 0 G 0u

0 0 0 G




    


 

and  
2~ ( , )N r 0 I  

 
which might be deceptive because the ‘‘I” is now much larger than before. 
The new block diagonal matrix for the variance of u is often with the same 
symbol as the variance of ju . To avoid confusion we can use G . 
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Notational	Babel	

Mixed models were simultaneously and semi independently developed 
by researchers in many different disciplines, each developing its own 
notation.  The notation we are using here is that of Bryk and Raudenbush 
(1992) which has been very influential in social research.  Many 
publications use this notation.  It differs from the notation used in SAS 
documentation whose development was more influenced by seminal 
statistical work in animal husbandry.  It is, of course, perfectly normal to fit 
models in SAS but to report findings using the notation in common use in 
the subject matter area.   A short bilingual dictionary follows. Fortunately, 
Y, X and Z are used with the same meaning.  



117 
 

 
 Bryk and 

Raudenbush
SAS 
help 
files 

Pinheiro 
and Bates

My 
current 

preference 
Fixed effects 
parameters 

γ β β γ 

Cluster random 
effect β b  β 

Cluster random 
effect (centered) u γ b u 

Variance of random 
effects T G Ψ  

 G 

Within cluster error 
variance Σ R 2 Λ  R 

 
For example in Bryk and Raudenbush the Mixed Model is: 

 

~ ( , ) ~ ( , )
i i i i i

i i iN N
  Y X γ Z u ε

u 0 T ε 0 Σ
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In Pinheiro and Bates: 
 

2~ ( , ); ~ ( , )
i i i i i

i i iN N





  y X Z b ε

b 0 Ψ ε 0 Λ
 

The	GLS	fit	
With the matrix formulation of the model, it is easy to Express the GLS 
estimator of γ . First denote: 

' 2Var( )   V δ ZGZ I  
Then the GLS estimator is: 

' 1 1 ' 1ˆ ( )  γ X V X X V Y  
We will see that the presence of 1V can result in an estimate that is very 
different from its OLS analogue5 

                         
5 One ironic twist concerns small estimated values of . Normally this 
would a cause for rejoicing; however it can result in a nearly singular V . 

2
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The model we just derived has every important component we want: 
 
 1. a within-cluster variable X with a fixed effect 
 2. a between cluster variable W with a fixed effect 
 3. a cross-level interaction X*W with a fixed effect 
 4. a random intercept varying from cluster to cluster 
 5. a random slope varying from cluster to cluster. 
 
Fitting this model in R: 
> library(nlme) 
> fit.mixed <- lme( Y ~ X * W, dd,  

random = ~ 1 + X | school) 
in long form 
> fit.mixed <- lme( Y ~ 1 + X + W + X:W, dd, 
             random = ~ 1 + X | school) 
                                                                                                                            
Although this need not imply that 1' X V Xis nearly singular. Algorithms do 
not yet take advantage of this. .  
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From	the	simple	to	the	complex	
 
Traditional name fixed part random part 
One way ANOVA with 
random effects 

Y ~ 1 ~ 1 | school 

Means as outcomes Y ~ 1 + W ~  1 | school 
One way ANCOVA Y ~ 1 + X ~  1 | school 
Random coefficients Y ~ 1 + X ~ 1 + X  

    | school 
Intercepts and slopes as 
outcomes 

Y ~ 1 + X + W  
   + X:W 

~ 1 + X  
    | school 

Non random slopes Y ~ 1 + X + W  
   + X:W 

~ 1 | school 

Parallel mean slopes Y ~ 1 + X + W ~ 1 + X  
    | school 
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Contextual cluster mean 
variable with CWG 
variable and random 
CWG slopes 

Y ~ 1 +  
cvar(X,school) + 
dvar(X,school)  

~ 1 + 
dvar(X,school) 
| school 

Contextual cluster mean 
variable with raw 
variable and random 
CWG slopes 

Y ~ 1 + 
cvar(X,school) + 
X  

~ 1 + 
dvar(X,school) 
| school 

Intercepts and slopes as 
outcomes with contextual 
cluster mean variable 
with CWG variable 
and random CWG effect 

Y ~ 1 + ( 
cvar(X,school) + 
dvar(X,school) ) 
* W 

~ 1 + 
dvar(X,school) 
| school 
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The	simplest	models	
We have now built up the notation and some theory for a fairly general 
form of the linear mixed model with both Level 1 and Level 2 variables and 
a random effects model with a random intercept and a random slope.  We 
will now consider the interpretation of simpler models in which we keep 
only some components of the more general model.  Even when we are 
interested in the larger model, it is important to understand the simple ‘sub-
models’ because they are used for hypothesis testing in the larger model. 
We will also consider some extensions of the concepts we have seen so far 
in the context of some of these simpler models. 
 
 

	One‐way	ANOVA	with	random	effects	
This is the simplest random effects models and provides a good starting 
point to illustrate the special characteristics of these models. 
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Level 1 model: 
0ij ijjY r   

Level 2 model: 
0 00 0j ju    

Combined model: 
00 0

2
0 00Var( ) Var( )

ij ijj

ij ijj

Y u r
Y u r g



  

   
 

 
 
Note the intraclass correlation coefficient: 
 

2
00 00/ ( )g g    

 
Also note that within each school: 
 



124 
 

. 0
2

. 0

E( )

Var( | )

j j

j j
j

Y

Y n







 

but across the population: 
 

. 0
2

. 0 00

E( )

Var( | )

j j

j j
j

Y

Y g n






 
 

 
This is an example of two very useful facts: 
 

1. the unconditional (sometimes called ‘marginal’ but not by economists) 
mean is equal to the mean conditional mean, 

 
2. the unconditional variance is equal to the mean of the conditional 

variance plus the variance of the conditional mean, i.e.: 
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. . .0 0
2

0
2

00

. . .0 0
2

0
2

00

Var( ) E(Var( | ) Var(E( | ))
Var( )

Var( ) E(Var( | ) Var(E( | ))
Var( )

j j jj j

j

j j jj j

j

Y Y Y

g

Y Y Y

g

 
 


 
 


 

 

 

 

 

 

 

 
Estimating	the	one‐way	ANOVA	model	
There are three kinds of parameters that need to be estimated: 
 

1. fixed effect parameters : in this case there is only one: 00 , 
2. variance-covariance components: 00g  and 2 , 
3. random effects: 

0 j
  or, equivalently, combined with 00 : 

0 j
u . 
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We use a different approach for each type of parameter. 
 
The fixed effects parameters are like linear regression parameters except 

that they are estimated from observations that are not independent. Instead 
of using OLS (ordinary least-squares) we use GLS (generalized least-
squares) using the estimates of the variance-covariance components as the 
variance matrix in the GLS procedure. 

 
The variance-covariance parameters are estimated using ML 

(maximum likelihood) or REML (restricted maximum likelihood). 
 
Note that each step above assumes that the other one has been completed. 

What really happens is that estimation goes back and forth between the two 
steps until convergence. 

 
The random effects are not just parameters. They are realizations of 

random variables. This means that we have two sources of information 
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about them: we can ‘estimate’ them from the observed data and we can 
‘guess’ them from their distribution. Putting these two sources of 
information together is the essence of Bayesian estimation, or empirical 
Bayesian estimation because the distribution of the random effects, 
determined by  00

gG , is estimated from the data and model. The random 
effects are predicted (in contrast with ‘estimated’) using EBLUPs 
(Empirical Best Linear Unbiased Predictors) with the empirical 
posterior expectation: 

 
01 0 1( , , | , , )nJE Y Y    

 
i.e. the expected value of what is unknown given what is known. 
 

We will look at the estimation of the three types of parameters in detail in 
this example. 

 
First we consider the analysis of the data using OLS in which we treat 

01 0, , J   as non-random parameters. The coding of the school effect 
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determines what is estimated by the intercept term. It is a weighted 
linear combination of the 0 j s: 

1 0
J

j
w j jw 


  

If the coding uses ‘‘true’’ contrasts (each column of the coding matrix 
sums to 0) the weights are all equal to 1/J and  w  is the ordinary mean of 0 j

s: 

01

1 J
w jJ    

In this case 

1
1ˆ

J

w j SchoolsY YJ     

 
With ‘‘sample size’’ coding, e.g. 
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1 2 3 1

1

2

3

4

1

1 2 3 1

0 0 0
0 0 0
0 0 0
0 0 0 0

0 0 0

J

J

J

J

JJ

J J

V V V V
School n
School n
School n
School

School n
School n n n n






   







     



 

 
each column of the design matrix sums to 0 and the intercept will estimate: 
 

1 0

1

J
jj j

w J
jj

n
n


 




   

 
which weights each school according to its sample size. This can be thought 
of as the mean of the population of students instead of the population of 
schools. The estimator would be the overall average of Y: 
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1
..

1

J
j jj

w J Students
jj

n Y
Y Yn 




    

 
We are not limited to these two obvious choices. A more appropriate set 

of weights could be school size, with coding: 
1 2 3 1

1

2

3

4

1

1 2 3 1

0 0 0
0 0 0
0 0 0
0 0 0 0

0 0 0

J

J

J

J

JJ

J J

V V V V
School s
School s
School s
School

School s
School s s s s






   







     



 

 
the intercept would estimate: 
 



131 
 

1 0

1

J
jj j

s J
jj

s
s


 




   

 
In each case the form of the estimate is a weighted mean of the individual 

school averages: 
 

1
ˆ J

w j jj
w Y


   

 
with variance: 

2
2

01 0 1
ˆVar( | , , ) J

w jJ j j
w n
  


   

 
where the weights, jw , sum to 1. Note that the variance is minimized when 
the weights are proportional to jn , i.e. /

j j
w n n  where n is the total sample 

size: j j
n n  . In this case the variance is 2 / .n  Thus, the student mean is the 

parameter estimated with the least variance. 
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Mixed	model	approach	
With a mixed model we want to estimate 00  instead of a particular linear 
combination of 

0 j
 s. Any weighted mean ˆ jw j jw Y  of 

j
Y s will be unbiased 

for 00  because 
 

0

00

00

ˆE( ) E( )

E( )
w j jj

j jj

jj

w Y

w
w








 





 

 
if the j

w  s are weights with 1.j jw   
Now, to calculate the variance of ˆ

w  as an estimator of 00 , we first need the 
variance of jY  as an estimator of 00  with 

0 j
  random: 

2
00Var( ) /j jY g n   

Thus: 
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2 2
00

ˆVar( ) ( / )w j jj
w g n    

The optimal estimator is obtained by taking weights inversely 
proportional to 2

00
( / ).

j
g n  

Consider the implications:  
 
1. If 00g  is much larger than 2 , the weights will be nearly constant and ˆ

w  
will be close to 

Schools
Y . 

2. Conversely, if 00g  is much smaller than 2 , the weights will be nearly 
proportional to 

j
n  and the estimator will be close to 

.Students
Y . 

If it is not reasonable to treat the 
0 j

 s as a random sample from the same 
00(0, )N g  distribution then these two estimators could estimate two quantities 

with very different meanings. Consider, for example, what would happen if 
there is a strong relationship between 

0 j
  and 

j
n s. What gets estimated is 

governed by the ratio 2

00 /g a   purely statistical consideration quite 
disconnected from any interpretation of the estimator. It is important to 
appreciate that your estimator is determined by considerations that might 
not be relevant. 
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In R the command is: 
 

  lme ( y ~ 1 , hs, random = ~ 1 | school ) 
 
In SAS, the (minimal) commands would be6: 

    
PROC MIXED DATA = MIXED.HS; 
        CLASS SCHOOL; 
        MODEL Y = ; 
        RANDOM INTERCEPT / SUBJECT=SCHOOL; 
        RUN; 

                         
6 To use the HS data set, download the self-extracting file following the link at the course website. 
Save it in a convenient directory. Click on its icon to create the SAS data set HS.SD2. From SAS, 
create a library named MIXED that points to this directory. You can then use the data set using the 
syntax in this example. 
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EBLUPs	
This interesting topic can, alas, be skipped. It played a central role in the 
early development of mixed models for animal husbandry where an 
important practical problem was estimating the reproductive qualities of a 
bull from the characteristics of its progeny.  In most applications of mixed 
models in the social sciences, the focus is on the estimation of the fixed 
parameters and much less so on the ‘prediction’ of the random effects.  
 
Estimating the 

0 ju s involves using two sources of information: the data and 
their distribution as random variables. First consider the OLS estimator for

0 j : 

.0
ˆ

jj Y   

Now, to get the Empirical Best Linear Unbiased Predictor of 
0 ju s, we 

pretend that the estimated values of 00  and 2  are the ‘‘true’’ values and 
we calculate the conditional expectation of 

0 j
u s given 

ij
y s. This is done most 
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easily using the matrix formulation of the model and a formula for the 
conditional expectation in the multivariate case. We use partitioned 
matrices to express the joint distribution of Y and u: 
 

' 2

'
,N                        

Xγ ZGZ I ZGY
u 0 GZ G

 
    

 
A ‘‘well-known’’ formula gives: 
 

1Ê( | ) ( ) Gu Y ZV Y Xγ  
 

where ' 2 V Z Z IG . This formula with a bit more mechanical work will give 
us the EBLUP below, but we will derive it intuitively: 
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1. We could estimate 
0 j

u  with the ‘‘obvious’’ OLS estimate:  
 

     .0 0 00 00
ˆ ˆ ˆˆ jj ju Y       

as an estimate of 
0 j

u  this has variance 2
./ jn  

2. We could also guess that 0 ju  is equal to 0 (the mean of its distribution) 
and our guess would have variance 00g . 

 
How can we ‘‘best’’ combine these independent sources of information? 

By using weights proportional to inverse variance! This gives us the 
EBLUP of 

0 j
u : 

2 0
00 0

20

2
00 00

1 1ˆ 0 ˆ/
1 1 /

1/

j
j j

j
j

j

g

g g

u un
u n

n







 

 
  

This has the effect of shrinking 0ˆ ju towards 0 by a factor of 
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2

2

2
00 00

1
/ 1

1 1 /
1/

j

j

j

n
n

n




 


 

 

Consider how the amount of shrinking depends on the relative values of 
2

00, g  and 
j

n . There will be more shrinkage if 
1. 00g  is small: i.e. the distribution of 

0 j
u  is known to be close to 0. 

2. 2  is large: i.e. 
0 j

Y has large variation as an estimate of 
0 j

 . 
3. 

j
n  is small: ditto. 

The EBLUP estimator of 0 j  (we’ll call it 
0 j  works exactly the same 

way with the OLS estimator (analyzing each school separately) which gets 
shrunk towards the overall estimator 00̂ . This is in exactly the same spirit 
as shrinkage estimators derived from Bayesian, Empirical Bayes or 
frequentist approaches. Bradley Efron and Carl Morris wrote an interesting 
article on the topic in Scientific American, Efron and Morris(1977). 
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Slightly	more	complex	models	
Means	as	outcomes	regression	
Level 1 model: 

0 0ij ijjY r     
Level 2 model: 

0 00 01 0jj jW u      
Combined model: 

00 01

0

ij j

ijj

Y W
u r

  
   

Note that  
0Var( ) Var( )ij ijjY u r   

as above but, in this model, Var( )
ij

Y   is a conditional variance, conditional 
given W. 
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In R the command is: 
 

  lm ( y ~ w , hs, random = ~ 1 | school ) 
 

In SAS, the commands for the means as outcomes model would be: 
 
    PROC MIXED DATA = MIXED.HS; 
        CLASS SCHOOL; 
        MODEL Y = W ; 
        RANDOM INTERCEPT / SUBJECT = SCHOOL; 
        RUN 

One‐way	ANCOVA	with	random	effects	
Level 1 model: 

0 1ij ij ijj jY X r     
Level 2 model: 
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0 00 0

1 10

j j

j

u 
 

 


 

Combined model: 
00 10

0

ij ij

ijj

Y X
u r

  
   

 
In R the command is: 
 

  lm ( y ~ x, hs, random = ~ 1 | school ) 
 

In SAS, the commands for one-way ANCOVA with random effects are: 
 

PROC MIXED DATA = MIXED.HS; 
        CLASS SCHOOL; 
        MODEL Y = X ; 
        RANDOM INTERCEPT / SUBJECT = SCHOOL; 
        RUN; 
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Random	coefficients	model	
Level 1 model: 

0 1ij ij ijj jY X r     
Level 2 model: 

0 00 0

1 10 1

j j

j j

u
u

 
 

 
 

 

with: 

0 00 01

1 10 11
Var j

j

u
u

 
 

                  

 T  

Combined model: 
00 10

0 1

ij ij

ij ijj j

Y X
u u X r
  

  
 

 
In R the command would be: 
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  lm ( y ~ x , hs, random = ~ 1 + x | school ) 
 
 
 
In SAS, the commands for the random coefficients model are: 
 

    PROC MIXED DATA = MIXED.HS; 
        CLASS SCHOOL; 
        MODEL Y = X ; 
        RANDOM INTERCEPT X / SUBJECT = SCHOOL TYPE = 
UN; 
        RUN; 

Intercepts	and	Slopes	as	outcomes	
This corresponds to the full model presented in 0 above. 

 
In R the command would be: 
 

  lme ( y ~ x * w , hs, random = ~ 1 + x | school ) 
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The SAS commands for this model are: 
 

    PROC MIXED DATA = MIXED.HS; 
        CLASS SCHOOL; 
        MODEL Y = X W X*W; 
        RANDOM INTERCEPT X / SUBJECT = SCHOOL TYPE = UN; 
        RUN; 

 
Note the X*W term. It is called a cross-level interaction. It has the 

function of allowing the mean slope with respect to X to vary with W. Note 
that R automatically generates the marginal terms, x and w. 
 

Nonrandom	slopes	
Consider the full model but with 11 0   (hence 01 0   also, otherwise T

would not be a variance matrix). This is a model in which the variation in 
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1
ˆ

j
  from school to school is wholly consistent with the expected variation 
within schools and there is no need to postulate that 11 0.   
 

In R the command would be: 
 

  lm ( y ~ x * w , hs, random = ~ 1 | school ) 
 
 
The SAS commands are left as an exercise. 
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Contextual	effects	
 
A major – and underexploited – advantage of multilevel models is that it is 
easy to separately estimate the between-cluster and the within-cluster 
effects of a variable. The advantages of this approach are: 
 

1.Including both effects in the model allows each to be estimated without 
contamination from the other.  Many classical applications of mixed 
models are based on the assumption that the between effect and the 
within effect are equal. If the assumption is not satisfied the estimate is 
biased. 
 

2.Effects at both levels can be estimated simultaneously with SEs that 
allow inference to appropriate populations. In contrast, the fixed effects 
model only allows generalization to new samples from the same 
clusters. The between-cluster model did not provide an estimate of the 
within-cluster effect. 
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3.Both between-cluster and within-cluster variables as well as cross-level 
interactions can be included in the same model. 
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Fixed part of the model with contextual cluster mean variable: 
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Fitting	the	models	
One	way	anova	with	random	effect	
 
> fit.oneway.re <- lme( mathach ~ 1, hs, random = ~ 1 | sid) 
> summary(fit.oneway.re) 
 
Linear mixed-effects model fit by REML 
 Data: hs  
       AIC      BIC    logLik 
  12985.94 13002.71 -6489.969 
 
Random effects: 
 Formula: ~1 | sid 
        (Intercept) Residual 
StdDev:    2.836278 6.296759 
 
Fixed effects: mathach ~ 1  
               Value Std.Error   DF  t-value p-value 
(Intercept) 12.60468 0.4711941 1937 26.75049       0 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.78262694 -0.74562760  0.03825124  0.78826675  2.51105403  
 
Number of Observations: 1977 
Number of Groups: 40  
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>  
> intervals( fit.oneway.re ) 
Approximate 95% confidence intervals 
 
 Fixed effects: 
               lower     est.    upper 
(Intercept) 11.68057 12.60468 13.52878 
attr(,"label") 
[1] "Fixed effects:" 
 
 Random Effects: 
  Level: sid  
                   lower     est.    upper 
sd((Intercept)) 2.214072 2.836278 3.633338 
 
 Within-group standard error: 
   lower     est.    upper  
6.101522 6.296759 6.498242  
 
> glh( fit.oneway.re ) 
 numDF denDF F.value p.value 
     1  1937 715.589 <.00001 
              
Coefficients  Estimate Std.Error   DF  t-value p-value Lower 0.95 Upper 0.95 
  (Intercept) 12.60468   0.47119 1937 26.75049 <.00001   11.68057   13.52878 
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Note: this could use a better approximation for degrees of freedom, e.g. the 
Satterthwaite algorithm that SAS uses. 
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plot(fit.oneway.re ) 

 
 
 
 
Note pattern in fitted 
residuals in contrast 
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> fixef( fit.oneway.re )   # estimation of fixed part of model 
(Intercept)  
   12.60468 
  
> ranef( fit.oneway.re )   # BLUP of error in random portion 
       (Intercept) 
P5762C -7.30651445 
P2639C -5.36017663 
P8854C -7.24846197 
P6484C  0.26973942 
. . . 
C2208C  2.58744359 
C2658C  0.71334861 
C1906C  3.09104215 
C9586G  2.08485465 
 
> coef( fit.oneway.re )    # BLUP combining fixed and random parts 
       (Intercept) 
P5762C    5.298161 
P2639C    7.244499 
P8854C    5.356214 
. . . 
C5619C   15.220870 
C2208C   15.192119 
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C2658C   13.318024 
C1906C   15.695718 
C9586G   14.689530 
 
 
> coef( fit.oneway.re) == ( ranef(fit.oneway.re) + fixef( fit.oneway.re )) 
       (Intercept) 
P5762C        TRUE 
P2639C        TRUE 
P8854C        TRUE 
. . . 
C3992C        TRUE 
C5619C        TRUE 
C2208C        TRUE 
C2658C        TRUE 
C1906C        TRUE 
C9586G        TRUE 
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> plot( mathach ~ as.numeric(sid) , hs) 
> abline( h = fixef( fit.oneway.re), col = 'green', 
lwd = 2) 
> abline( h = mean( hs$mathach), col = 'black') 
> abline( h = mean( c(tapply( hs$mathach, hs$sid, 
mean))), col = 'red') 
>  
> ?legend 
> legend( 'bottomright', c('mixed model GLS', 
'overall mean', 'mean of means'), 
+                       col = 
c('green','black','red'), lty = 1, lwd = 2) 
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plot( mathach ~ as.numeric(sid) , hs, ylim = c(12.4,13), xlab = 'school') 
abline( h = fixef( fit.oneway.re), col = 'green', lwd = 2) 
abline( h = mean( hs$mathach), col = 'black', lwd = 2) 
abline( h = mean( c(tapply( hs$mathach, hs$sid, mean))), col = 'red') 
legend( 'bottomleft', c('mixed model GLS', 'overall mean', 'mean of means'), 
                      col = c('green','black','red'), lty = 1, lwd = 2) 



158 
 

 

0 10 20 30 40

12
.4

12
.5

12
.6

12
.7

12
.8

12
.9

13
.0

school

m
at

ha
ch

mixed model GLS
overall mean
mean of means



159 
 

> hs$n <- capply( hs$sid, hs$sid, length)  # sample size in each school 
> hs$mathach.ols <- capply( hs$mathach, hs$sid, mean) 
>  
> hs1.sid <- up(hs, ~ sid) 
> rownames(hs1.sid) == rownames( coef( fit.oneway.re))  # check that they 
match 
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE 
[18] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
TRUE 
[35] TRUE TRUE TRUE TRUE TRUE TRUE 
>  
> hs1.sid$blup <- coef( fit.oneway.re ) [,1] 
> some( hs1.sid) 
       school sector Size   Sector PRACAD DISCLIM HIMINTY  Sex.comp Sex.cat    sid what 
P8854C   8854      0  745   Public   0.18  -0.228       0 0.5312500    Coed P8854C    p 
P2771C   2771      0  415   Public   0.24   1.048       0 0.5090909    Coed P2771C    p 
P5640C   5640      0 1152   Public   0.41   0.256       0 0.4210526    Coed P5640C    p 
P7345C   7345      0  978   Public   0.64   0.336       1 0.5178571    Coed P7345C    p 
P6897C   6897      0 1415   Public   0.55  -0.361       0 0.5918367    Coed P6897C    p 
C4530G   4530      1  435 Catholic   0.60  -0.245       1 1.0000000   Girls C4530G    p 
C7342B   7342      1 1220 Catholic   0.46   0.380       1 0.0000000    Boys C7342B    p 
C5720C   5720      1  381 Catholic   0.65  -0.352       0 0.4528302    Coed C5720C    p 
C7688B   7688      1 1410 Catholic   0.65  -0.575       0 0.0000000    Boys C7688B    p 
C1906C   1906      1  400 Catholic   0.87  -0.939       0 0.5094340    Coed C1906C    p 
           ses.sch mathach.sch  n mathach.ols      blup 
P8854C -0.75675000    4.239781 32    4.239781  5.356214 
P2771C -0.33945455   11.844109 55   11.844109 11.906661 
P5640C -0.17659649   13.160105 57   13.160105 13.115900 
P7345C  0.03325000   11.338554 56   11.338554 11.440975 
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P6897C  0.34955102   15.097633 49   15.097633 14.869792 
C4530G -0.59688889    9.055698 63    9.055698  9.313204 
C7342B -0.44782759   11.166414 58   11.166414 11.279062 
C5720C  0.03256604   14.282302 53   14.282302 14.139565 
C7688B  0.18588889   18.422315 54   18.422315 17.935733 
C1906C  0.51162264   15.983170 53   15.983170 15.695718 
>  
> 
 
>  
> plot( c(1,40), range( hs1.sid$mathach.ols), xlab = '', ylab = 'mathach', 
type = 'n') 
> abline( h = fixef( fit.oneway.re ), col = 'black', lwd = 1.5) 
> points( 1:40, hs1.sid$mathach.ols, col = 'blue', pch = 16, cex = 1.2) 
> points( 1:40, hs1.sid$blup, col = 'red', pch = 16) 
> legend( 'topleft', c('BLUE', 'BLUP', 'Overall GLS'), 
+         col = c('blue','red','black'), 
+         pch = c(16,16,NA), 
+         lty = c(NA,NA, 1)) 
> 



161 
 

 

0 10 20 30 40

4
6

8
10

12
14

16
18

m
at

ha
ch

BLUE
BLUP
Overall GLS



162 
 

> ##  by sample size + a few more plotting bells and whistles 
>  
> plot( range( hs1.sid$n), range( hs1.sid$mathach.ols), 
+       xlab = 'sample size', ylab = 'mathach', type = 'n', 
+       main = 'Shrinking from the BLUE to the BLUP -- relationship with n') 
> abline( h = fixef( fit.oneway.re ), col = 'green3', lwd = 2) 
> points( hs1.sid$n, hs1.sid$mathach.ols, col = 'blue', pch = 16, cex = 1.2) 
> points( hs1.sid$n, hs1.sid$blup, col = 'red', pch = 16) 
> arrows( hs1.sid$n, hs1.sid$mathach.ols, hs1.sid$n, hs1.sid$blup, length= 
.1) 
Warning message: 
In arrows(hs1.sid$n, hs1.sid$mathach.ols, hs1.sid$n, hs1.sid$blup,  : 
  zero-length arrow is of indeterminate angle and so skipped 
> legend( 'topleft', 
+         # c('BLUE', 'BLUP', 'Overall GLS', 'shrinkage'), 
+         expression(BLUE, BLUP, hat(gamma[0]), shrinkage), 
+         ncol = 2, 
+         col = c('blue','red','green3', 'black'), 
+         lwd = c(NA, NA, 2,2), 
+         pch = c(16,16,NA, NA), 
+         lty = c(NA,NA, 1, 1)) 
> 
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Note how shrinkage is roughly proportional to the distance of the BLUE 
from the overall  GLS estimate (green line) and smaller as n gets larger.  
Note also that the spread of  the BLUE is greater with with smaller n, 
illustrating the notion that the BLUE is not as good an estimate in this case. 
 
The GLS estimate is an 'optimal' estimate that takes all these issues into 
account. What is being estimated is the overall mean of the population from 
which schools are drawn. This mean (as a parameter of the population of 
schools) is defined to give the same weight to all schools, regardless of 
sample size.   
 
The GLS mixed model estimator gives less weight to schools with smaller 
n but only because their data gives an estimate with larger variance. 
 
The BLUP is a reasonable estimator for a particular school as long at the 
information from other schools deserves the weight it gets in shrinking the 
BLUE. If a school is not 'exchangeable' in the sample with other schools, 
i.e. if some known characteristic distinguishes it so that it can't be thought 
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of as 'just another school in the sample' then the BLUE should be preferred 
to the BLUP. 
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Intercepts	and	slopes	as	outcomes	

 
Figure 18: BLUPS from a model with random slopes 
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Figure 19: BLUEs in blue and BLUPs in red. Mean value in green. 
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The BLUPS show much less variability wrt beta.ses than the BLUES. This 
is because the BLUPS recognize that much of the variability in beta.ses is 
explicable by the large variablility in beta.hats.ses due  to the samples. It 
does not interpret that variability as indicative of a variability in the slopes 
of the 'true' lines. The variability in intercepts, on the other hand, IS 
preserved in the BLUPS.  
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Why BLUPs are called 
'shrinkage' estimators.  
It is an inverse variance 
weighted combination of 
the BLUE and of the 
population estimate.  
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 If we knew the population 
mean line  , the between 
cluster variance, G and 
the the within-cluster 
variance, 2 , the best 
predictor of  

j
 , the line 

for school j, combines   
and the BLUE, ˆ

j : 
1
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Note that 
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Note: the BLUPS vary less than G and the BLUES vary more than G.  
 

ˆVar( ) Var( ) Var( )j j jG      

 
Note the estimated population lines for each sector are much closer to the 
centre of the BLUP ellipse than to the BLUE ellipse. Why?  
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The  estimated population lines can be expressed as weighted combination 
of either the BLUES or of the BLUPS. However the weights VARY LESS 
when using the BLUPS than the BLUES.  
 
 

How	can	both	BLUEs	and	BLUPs	be	'best'?	
 
How can that be?  
They are best for different things. 
 
Recall the regression paradox: the best prediction of son's heights are best 
individually but they don't look like the distribution of son's heights. Best 
locally is not necessarily best at reproducing overall criteria. 
 
BLUE is best for resampling from the same school over and over again. The 
BLUP is best on average for resampling from the population of schools 
and students. 
 



173 
 

 
 
 
If I'm a heartless bureaucrat and I want to be close on average I'll use the 
BLUP.  
 
It's a bit like the basis of discrimination. If I don't have much information 
about you, I might use what I think I know about the group you seem to 
come from (here Catholic or Public) and I'll combine the two sources of 
information in an 'optimal' way.  
 
If I really care to get a particular special school right, I would use the 
BLUE. The BLUP is justified only if the school is exchangeable  with other 
schools in the sample and population conditional on the contextual 
variables. 
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Lab	1	
 
Lab 1, which will probably take almost 2 days to complete, covers the 
implementation of concepts seen in these slides as well as many 
complementary concepts that seem to be better presented in the context of a 
actual analysis. Some of the ideas covered in Lab 1 
Lab 1:  
 
 First example: Between Sector gap in Math Achievement 

o Randomly selecting a subsample of clusters (schools) 
o Having a first look at multilevel data 
o Creating new Level 2 variables from Level 1 data 
o Seeing data in 3d 
o A second look at multilevel data: targeted to a model 
o Seeing fitted lines in beta space 
o Between and within cluster effects 
o Fitting a mixed model 
o Handling NAs (simplest considerations) 
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o Non-convergence 
o First diagnostics: Hausman test 
o Contextual variables to the rescue 
o Interpretation of models with contextual effects 
o Estimating the compositional (= between) effect 
o Alternative equivalent parametrizations for the FE (fixed effects) 

model. 
o Alternative non-equivalent parametrizations for the RE (random 

effects) model 
o Diagnostics based on Level 1 residuals 
o Diagnostics based on Level 2 residuals (REs) 
o Influence diagnostics 
o Plotting the fitted model: hand-made effect plots 
o Linking the picture and the numbers 
o Formulating and testing linear hypotheses 
o Graphs to show confidence bounds for hypotheses 

 Second example: Minority status and Math Achievement 
o Preliminary diagnostics using Level 1 OLS model 
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o OLS influence diagnostics 
o Scaling Level 1 variables 
o Fitting a mixed model 
o Dealing with non-convergence 
o Building the RE model with a forward stepwise approach 
o Simulation to adjust p-values 
o Test for contextual effects II 
o Simplifying the model 
o Using regular expression for easy tests of complex hypotheses 
o Some Level 2 diagnostics 
o Near-singularity: a pancake in 3D 
o Visualizing the model: hand-made effect plots II 
o The minority-majority gap 
o Comparing different RE models 
o More diagnostics 
o Marginal and conditional models 
o Refining the FE model 
o Multilevel R Squared 
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o Visualizing the model to construct hypotheses 
     
 


